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Summary. The probability of negative analysis of 
variance estimates of genetic variance components due 
to sampling error (Ps) was investigated. The objectives 
were to evaluate the magnitude of Ps, to compare Ps 
for estimates of a2A and a~, and to compare Ps for 
genetic variance component estimates from the nested 
and factorial mating designs. Ps was defined in terms of 
ratios of mean squares and the F distribution was used 
to calculate probabilities of the negative estimates. The 
results indicated that Ps is often greater than 0.20 for 
a~. It is generally lower for a~ than for aZD, and lower 
for the factorial mating design than the nested mating 
design. 
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Introduction 

The nested (Design 1) and factorial (Design 2) mating 
designs are useful for obtaining estimates of the genetic 
variance components due to breeding values (a2A) and 
dominance deviations (a~) (Comstock and Robinson 
1948; Hallauer and Miranda 1981). The analysis of 
variance (ANOVA) method is often used to calculate 
these estimates of genetic variances (Hallauer and 
Miranda 1981). ANOVA estimators have the advan- 
tages of being unbiased and having minimum variance 
among all unbiased quadratic estimators, but also have 
the disadvantage of the possibility of negative esti- 
mates of the variance components (Hallauer and Mi- 
randa 1981; Searle 1971). 

* Technical Contribution No. 2589 from the South Carolina 
Agricultural Experiment Station, Clemson University 

The occurrence of negative estimates of genetic 
variance components has been reported many times in 
the literature (E1Rouby and Penny 1967; Leone et al. 
1968; Lindsey et al. 1962; Robinson et al. 1955; Sentz 
1971; Williams et al. 1965). The negative estimates are 
usually attributed to some combination of an inade- 
quate genetic model (no epistatic effects in the model), 
sampling error, inadequate experiment design (compe- 
tition effects among the individuals), and assortative 
mating (Hallauer and Miranda 1981; Lindsey etal. 
1962). The true magnitude of the probability of nega- 
tive estimates is not clear from these reports. The 
reports do suggest that negative estimates of cr~ are 
more frequent than negative estimates of CrZA and that 
negative estimates of both genetic variance components 
from the nested mating design are more frequent than 
negative estimates of genetic variance components 
from the factorial mating design. 

The purpose of this research was to s tudy  the 
probability of obtaining negative ANOVA estimates of 
genetic variance components due to sampling error (Ps) 
only. The specific objectives were to evaluate the 
magnitude of Ps in general, and to compare Ps 
for CrZA and cro2 and for nested and factorial mating 
designs. 

Materials and methods 

Derivation of probabilities 

The analysis of variance for a nested mating design in a repli- 
cations-in-sets experiment design is shown in Table 1. Ran- 
dom design factors, balanced data, no competition effects, no 
epistasis, normal diploid meiosis, no linkage, two alleles per 
locus, non-inbred material, and random mating were assumed. 
The ANOVA estimators of the genetic variance components 
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are 

6-12 = 4 [(M M - MF(M))/fr] 
=43-2  (1) 

and 

dD 2 = 4 [(MF(M) -- MR)/r -- (MM -- MF(M)) fr] 
= 4 [6-2(M) -- ~-2] (2) 

where terms are defined in Table 1. 
The analysis of variance for a factorial mating design in a 

replications-in-sets experiment design is shown in Table 2. 
Assumptions were analogous to Table 1. The ANOVA esti- 
mators of the genetic variance components are (using a pooled 
estimator of O 2) 

612 = 2 [(MM- MMF)/rf + ( M F -  MMF)/rm] 

= 2 [#~ + c3-F 2 ] (3) 

and 
. 9  

r = 4 [(MMF -- MR)/r ] 
~ 9  

= 4 a~F (4) 

where terms are defined in Table 2. 
Four probabilities were derived based on the methods of 

Leone et al. (1968) and Gill and Jensen (1968). The following 
notation was used for these probabilities: 

Psan = probability of negative ANOVA estimates of aA 2 from 
the nested mating design 

Psdn = probability of negative ANOVA estimates of a 2 from 
the nested mating design 

Psaf = probability of negative ANOVA estimates of aA 2 from 
the factorial mating design 

Psdf = probability of negative ANOVA estimates of ~rD 2 from 
the factorial mating design 

Psan is equivalent to the probability that MM is less than 
MF(M) in (1). Therefore Psan can be written 

Psan = P {M M < MF(M) } 

= P {MM/MF(M) < l}, 

If the measured trait is normally distributed, then the random 
variable 

Fsan = [M M/E (MM)]/[MF (M)/E (MF (M))] 
has an F distribution with df  M and dfv(M) degrees of freedom 
and Psan can be written in terms of Fsan as follows: 

Psan = P {[MM/E (MM)]/[MF(M) E (Mr (M))] 

< E (MF(M))/E (MM) } 

= P {Fsan < E(MF(M))/E(MM)}. 

Psdf is equivalent to the probability that MMF is less than 
MR in (4). Psdf can be written in terms of an F-statistic similar 
to Psan as follows: 

Psdf = P {Fsdf < E (MR) /E  (MMF)] 

where Fsdf is a random variable that has an F distribution 
with dfMF and dfR degrees of freedom. 

Psdn is equivalent to the probability that ( f+ 1) MF(M) is 
less than (f MR+ MM) in (2). Therefore Psdn can be written 

Psdn = P  {(f+ 1)MFM < f'MR+MM} 

= p {MF(M)/[fM R + MM] < ( f +  1)-I} .  

If the measured trait is normally distributed, then the random 
variable 

Fsdn = [MF(M)/E (MF(M))]/[(fMR + MM)/(fE(MR) + E(MM))] 

has an approximate F distribution with dfF(M) and fiE(MR) 
+ E(MM))2/(((fE(MR))2/dfR)+((E(MR)2)/dfM)) degrees of 
freedom (Satterthwaite 1946; Searle 1971) and Psdn can be 
written in terms of Fsdn as follows: 

Psdn = P {[MF(M)/E (MF(M)]/[(fM R + MM)/ 

(fE (MR) + E (MM))] < [fE (MR) + E (MM)]/ 

[(f + 1) E (Mv(M))]} 

= P {Fsdn < [fE (MR) + E (MM)]/[(f  + 1) E (MF(M))] } . 

Psaf is equivalent to the probability that (m MM + fMv) is 
less than (m + f) MMF in (3). Psaf can be written in terms of an 
F-statistic similar to Psdn as follows: 

Psaf = P {Fsaf < [(m + f) E (MM~)]/[fE (MF) 4- m E (MM)]} 

where Fsaf is a random variable that has an approximate F 
distribution with (m E (MM) + fE (MF))2/(((m E (MM))2/dfM) 
+((fE(MF))2/dfF)) and dfMF degrees of freedom (Sat- 
terthwaite 1946; Searle 1971). 

The derived probabilities are functions of the expected 
mean squares. The expected mean squares are functions of the 
variance components and the design factors (see Tables 1 and 
2). Values were assigned to each variance component and 
design factor so that the probabilities could studied. The 
values were chosen to approximate actual mating design 
experiment conditions and were as follows: 

Variance component Assigned value(s) 

a 2 1,2,3,4 
aD 2 0.25, 0.5, 0.75, 1 
a~B 1.5 
Cr2w 0.25 

Design factor Assigned value(s) 

sets l, 2 
males 5, l0 
females 5, 10 
replications 2, 4 
individuals 20 

The values of a 2 and cr~ were chosen so that the effect of 
the genetic variance magnitude on Ps could be studied. The 
values for number of sets, males, females, and replications 
were chosen so that the effect of allocation on Ps could be 
studied. The values of the variance components and design 
factors were used to define 256 different combinations that 
represent different mating experiments. The four probabilities 
were calculated in each experiment. 

Results 

The  means,  medians ,  m a x i m u m  values, and m i n i m u m  
values  o f  the four  p robabi l i t i es  across all 256 exper i -  

ments  are shown in Tab le  3. The  means  o f  the four  
probabi l i t i es  were contras ted to c o m p a r e  Ps for the 
nested and factorial  ma t ing  designs and for at~ and aA 2 . 

The  contrast  o f  the means  o f  Psan and Psaf  (0.0431 vs 
0.0059) indicated that  Ps for a~ is less in the factor ia l  
mat ing  design than in the nested ma t ing  design. The  



Table 1. Analysis of variance for a nested mating design in a replications-in-sets experiment design 
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Source of Degrees of Mean 
variation a freedom b,c square ~ 

Expectation of mean square 

Observational r d 

S 
B(S) 
M (S) df  M = s (m - 1) MM E (MM) = aR2 + r O'F(M)2 + f r a~4 

2 2 F (MS) dfF (M)= S m (f--  1) MF(M) E (MF(M)) = a R + r aF (M) 
R df R = s ( m  f -  1 ) ( r -  1) M R E(MR) =al~ 

Genetic c. o 

Z 2 • 2 i E (MM) = (a2EW + ' .  aA 2 + 3/4 a~)/k + a~B + r!~ _~+ a4 a2o ! + f r (7 a2) 
E (MF(M)) = (0"2W + :  ] 0 .2 + 3/4 a2)/k + a2B + r t~ aA -r- "~ ODl 
E(MR) = (cr~w + : a2+3/4a2)/k+a2B 

a S: sets; B: blocks; M: males; F: females; R: pooled residual 
b s: number of sets; m: number males/set; f: number of females/males/set; r: number of replica- 
tions; k: number of individuals/plot 
c The S has been omitted from subscripts to simplify notation 
d a2: pooled residual variance component; a2(M):female-within-male-set combination variance 
component; a2 :  male-within-set variance component 
e a2EW and a2B: variance components due to environmental variance within and between plots, 
respectively; a 2 and a2: variance components due to breeding values and dominance deviations, 
respectively 

Table 2. Analysis of variance for a factorial mating design in a replications-in-sets experiment 
design 

Source of Degrees of Mean 
variation a freedom b, c square e 

Expectation of mean square 

Observational e.d 

S 
B(S) 
M (S) dfM = s (m -- 1) MM E (MM) = 0 .2 + r a~tv + r f a~  
F(S) dfF = s ( f - l )  MF E(Mv) = a 2 + r a 2 v + r m a ~  
M x F ( S )  dfMF= s (m- -  l ) ( f - -  1) MMF E(MMF)= a 2 +  r a~lv 
R dfR = s(m f--  1)(r--  !) M R E(MR) = a 2 

Genetic c,e 

E (MM) = (a~w + } a~, + 3/4 a2)/k + a~B + r (~ cry) + r f(�88 a~) 
E (MF) = (0"2W + ~ a 2 + 3/4 at~)/k + tr~a + r (7 ~r2) + r m (1 aA 2) 

E ((MRS)-- ((~w + ~ ~ +3/4a2)/k+a2EB+r(xa2)3/4 a2,/k + a2B 

a S: sets; B: blocks; M: males; F: females; R: pooled residual 
b s: number of sets; m: number of males/set; f: number of females/male/set; r: number of replica- 
tions; k: number of individuals/plot 
c The S has been omitted from subscripts to simplify notation 
d a2: pooled residual variance component; a2F: male-female interaction variance component; a2: 
female variance component; or2: male variance component 
e a2EW and a2B: variance components due to environmental variance within and between plots, 
respectively; a~ and a~: variance components due to breeding values and dominance deviations, 
respectively 
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contrast of  the means of  Psdn and Psdf (0.3501 vs 
0.1946) indicated that Ps for 62 is less in the factorial 
mat ing design than in the nested mat ing design. The 
comparison of Ps for the two mating designs is s imilar  
for 6A 2 and a~. These comparisons indicate that Ps is 
generally less for the factorial  mat ing design than for 
the nested mating design. The contrast of  the means of  
Psan and Psdn (0.0431 vs 0.3501) indicated that Ps for 
6A 2 is less than Ps for 62 for the nested mating design. 
The contrast of  the means of  Psaf and Psdf (0.0059 vs 
0.1946) indicated that Ps for OA 2 is also less than Ps 
for o~ for the factorial  mat ing  design. The com- 
parison of  Ps for 6A 2 and 6~ is s imilar  for both mat ing 
designs. These comparisons  indicate that Ps is general- 
ly less for 6A 2 than for 62. 

The same conclusions can be reached by contrasting 
the medians  of  Psan, Psdn, Psaf, and Psdf from 
Table 3. The contrast of  the medians  of  Psan and Psaf 
(0.0217 vs 0.0001) along with the contrast of  Psdn and 
Psdf (0.3670 vs 0.1911) indicate that  Ps is generally less 
for the factorial mat ing design. The contrast of  the 
medians  of  Psan and Psdn (0.0217 vs 0.3670) along 
with the contrast of  Psaf and Psdf (0.0001 vs 0.1911) 
indicate that Ps is general ly  less for o2 than for o2 .  

The max imum and min imum values of  the four 
probabi l i t ies  from Table 3 indicate that the magni tude  
of  Ps could be much larger than expected for 62 in 
some experiments (Psdn = 0.4568) and negligible for 
6~ in other experiments  (Psan=0 .0000  and Psaf 
= 0.0000). The logical next step was to determine  the 
frequency of  experiments  in which large Ps values 
occur. The means and medians  from Table 3 suggest 
that large Ps occur often for 62. 

Frequency tables for the four probabi l i t ies  are 
shown in Table 4. Psan and Psaf values less than 0.10 
occurred in 84.8% and 98.8% of  the experiments,  re- 
spectively. Psdn and Psdf values greater  than 0.20 
occurred in 94.5% and 47.3% of  the experiments  respec- 
tively. These frequencies indicate that large Ps values 
for 62 are common in the experiments  considered 
while large Ps values for 6A 2 are rare. 

The combined data  in Tables 3 and 4 show that 
Psdn had the highest mean and median  and the highest 
concentration of  Ps values greater  than 0.20. Psaf had 
the lowest mean and median  and the highest concen- 
trat ion of  Ps values less than 0.10. We can conclude 
that est imating 6~ from the nested mating design 
involved the highest general Ps and that est imating 6A 2 
from the factorial mat ing design involved the lowest 
general Ps. This conclusion follows from the com- 
parisons of  Ps for the nested and factorial mating 
designs and 6~ and 62. 

The effect of  genetic variance component  magni-  
tude on Ps was evaluated to de termine  i f  the relative- 
ly large Ps values occurred only in experiments  with 

Table3. Means, medians, maximum values, and minimum 
values of the probabilities of negative estimates of genetic 
variances due to sampling error (Ps) 

PS a 

Psan Psdn Psaf Psdf 

Mean 0.0431 0,3501 0.0059 0.1946 
Median 0.0217 0,3670 0.0001 0.1911 
Maximum 0.2691 0.4568 0.1292 0.4485 
Minimum 0.0000 0,0552 0.0000 0.0001 

Psan and Psdn are the probabilities of negative estimates of 
breeding value and dominance deviation genetic variances, 
respectively, from the nested mating design; Psaf and Psdf are 
the probabilities of negative estimates of breeding value and 
dominance deviation genetic variances, respectively, from the 
factorial mating design 

Table 4. Frequency tables for the probabilities of negative 
estimates of genetic variances due to sampling error (Ps) 

Class Ps a 

Psan Psdn Psaf Psdf 

0 _< Ps < 0.1 217 b l 253 78 
84.8 0.4 98.8 30.5 

0.1 < Ps < 0.2 35 13 3 57 
13.3 5.1 1.2 22.3 

0.2 < Ps < 0.3 5 42 0 53 
2.0 16.4 0 20.7 

0.3 < Ps < 0.4 0 119 0 52 
0 46.5 0 20.3 

0.4 < Ps _< 1.0 0 81 0 16 
0 31.6 0 6.3 

a Psan, Psdn, Psaf, and Psdf are defined in Table 3 
b Top number is the absolute frequency of experiments with 
a Ps value in the particular class: Bottom number is the 
percentage (out of 256) of the experiments with a Ps value in 
the particular class 

relatively small values of  the genetic variance compo-  
nents. Psan and Psaf  values were averaged over all 
experiments with a part icular  value of  o 2 (Table 5). 
The mean Psan and Psaf increased as the value of  OA 2 
decreased, but  the mean Psan and Psaf were less than 
0.10 for even the smallest value of  o2. Psdn and Psdf 
values were also averaged over all experiments  with a 
part icular  value of  OD z (Table 5). The mean Psdn and 
Psdf increased as the value of  OD 2 decreased and were 
greater than 0.30 for the smallest value of  OD 2. However, 
the mean Psdn was greater tan 0.25 for even the largest 
value of  a~ and Psdf was greater than 0.10 for all but  
the largest value of  o 2. These data  indicate that nega- 
tive estimates of  a~ can occur for the largest and the 
smallest values of  6~. 



Table 5. Mean probabilities of negative estimates of genetic 
variance due to sampling error (Ps) for different values of the 
genetic variance components 

Genetic a Value of Ps b 
variance genetic 

variance Psan Psaf 

cr~ 1 0.0781 0.0181 
2 0.0410 0.0037 
3 0.0294 0.0013 
4 0.0239 0.0005 

Psdn Psdf 

0.25 0.4222 0.3272 
0.50 0,3696 0.2107 
0.75 0.3239 0.1416 
1.00 0.2846 0.0988 

a aA 2 and a~ are the variance components due to breeding 
values and dominance deviations, respectively 
b Psan, Psaf, Psdn, and Psdf are defined in Table 3 

Table 6. Mean probabilities of negative estimates of genetic 
variance due to sampling error (Ps) for different combinations 
of values of sets, males, females, and replications 

Com- Design factor 
bina- value" 
tion 

Ps b 

s m f r Psan Psaf Psdn Psdf 

1 1 5 5 2 0.1685 0.0423 0.4160 0.3661 
2 1 5 5 4 0.1236 0.0154 0.3852 0.2508 
3 1 5 10 2 0.0788 0.0091 0.3796 0.2984 
4 1 5 10 4 0.0512 0.0020 0.3480 0.1541 
5 1 10 5 2 0.0599 0.0091 0.3919 0.2984 
6 1 10 5 4 0.0317 0.0020 0.3577 0.1541 
7 1 10 10 2 0.0130 0.0004 0.3478 0.2202 
8 1 10 10 4 0.0051 0.0000 0.3143 0.0788 
9 2 5 5 2 0.0714 0.0107 0.3921 0.3076 

10 2 5 5 4 0.0402 0.0020 0.3587 0.1663 
11 2 5 10 2 0.0179 0.0009 0.3501 0.2291 
12 2 5 10 4 0.0077 0.0001 0.3177 0.0867 
13 2 10 5 2 0.0147 0.0009 0.3551 0.2291 
14 2 10 5 4 0.0045 0.0001 0.3158 0.0867 
15 2 10 10 2 0.0010 0.0000 0.3030 0.1489 
16 2 10 10 4 0.0001 0.0000 0.2980 0.0374 

a s: number of sets; m: number of males; f: number of 
females; r: number of replications 
b Psan, Psaf, Psdn, and Psdf are defined in Table 3 

The effect of  genetic variance component  magni-  
tude on Ps was also evaluated to determine  if  the dif- 
ference in Ps for cry, and a~ was due to the different  
ranges of  values for a~ and a~. The four probabi l i t ies  
were recalculated using values of  1, 2, 3, and 4 for both 
aA 2 and cr 2. The means of  Psan, Psdn, Psaf, and Psdf 
were 0.0682, 0.1643, 0.0167, and 0.0368, respectively. 
The comparisons of  Ps for 21 and a~ do not change. 
The difference in Ps for ~r~ and cr 2 seems to be due to 
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the method of est imation rather  than the magni tude  of  
the variance components.  

The effect o f  design factor magni tude  on Ps was 
evaluated to determine  i f  the relat ively large Ps 
values occurred only in relat ively small  sized ex- 
periments,  i.e., exper iments  with small  values of  the 
design factors. Ps values were averaged for all possible 
combinat ions  of  design factor values (Table 6). The 
mean Psan is greater  than 0.10 only for the smallest 
exper iment  sizes (combinat ions  1 and 2), while the 
mean Psaf is less than 0.10 for all exper iment  sizes. The 
mean Psdn is greater than 0.25 for all exper iment  sizes 
and the mean Psdf is greater  than 0.10 for all but  the 
largest experiment  sizes (combinat ions  8, 12, 14, and 
16). These data  indicate that  negative est imates of  a~ 
occur frequently for even the largest exper iment  sizes. 

The results are summar ized  as follows: (!)  Ps is less 
for Cr2a than for ~ ;  (2) Ps is less for the factorial  mat ing 
design than for the nested mat ing design; (3) Ps for a~ 
can be 0.20 and greater in many of  the mat ing experi-  
ments considered:  (4) the largest Ps values occur when 
estimating a 2 from the nested mating design and the 
smallest  occur when est imating a2 from the factorial  
mat ing design; (5) Ps for cr~ can be 0.20 and greater  for 
even the largest exper iment  sizes and values of  cr~ 
considered. 

Discussion 

Negative estimates of  genetic variance components  are 
difficult  to interpret  (Searle 1971) and therefore unde- 
sirable in mating design experiments.  The high values 
o f  Ps indicate that negative estimates are a significant 
problem in mat ing design experiments.  The results of  
our research suggest three methods  to reduce the 
probabi l i ty  of  negatives est imates occurring. 

The first method to reduce Ps is to use the factorial  
mat ing design instead of  the nested mat ing design. The 
nested mating design is presently used more frequently 
(Hallauer and Miranda  1981) because the matings are 
often easier to achieve. However the higher  Ps for the 
nested design in our study indicates the more diff icult  
factorial matings should be a t tempted  whenever  pos- 
sible. This recommendat ion  agrees with Comstock and 
Robinson (1952) who repor ted that  the nested mat ign  
design gives less precise est imates for ~r 2. The proba-  
bil i ty of  negative est imates of  a~ is still relat ively large 
even in the factorial mat ing  design (Table 5). 

The second method is to use the data  in Table 6 to 
determine the best  al locat ion of  design factor resources 
to reduce Ps. For  example,  consider an exper iment  
where the object ive is to est imate cr~ and the factorial  
mat ing design is used. Obviously  combina t ion  16 (the 
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largest experiment  size) has the min imum Psdf and 
combinat ion  1 (the smallest  experiment  size) has the 
max imum Psdf. Suppose that the resources are not 
avai lable  for the largest experiment.  Resources are 
available for an exper iment  with one set, five males, 
five females, and four replications (combinat ion 2) or 
an experiment  with two sets, five males, five females, 
and two replications (combinat ion  9). The values of  
Psdf  (0.2508 vs 0.3076) indicate that the combinat ion  2 
experiment  is better  for reducing Ps. If the objective 
was to estimate a~, the values of  Psaf (0.0154 vs 
0.0107) indicate that  the combinat ion  9 experiment  is 
preferable.  If  the object ive was to est imate both a 2 and 
cr 2, then the combinat ion  2 exper iment  is preferable 
because both values of  Psaf are relatively small com- 
pared to the values of  Psdf. 

A table s imilar  to Table 6 can be constructed to 
study al location for almost any mating design experi- 
ment  of  interest by modifying the calculation of  Ps. 
Different values of  the variance components  and de- 
sign factors can be substi tuted into the calculation of  
Ps to reflect realistic values for the specific experiment  
o f  interest. If  the exper iment  design is completely 
randomized rather than a randomized block, then the 
source of  variat ion for block in Tables 1 and 2 would 
be removed and the pooled residual degrees of  free- 
dom becomes ( s m f ) ( r - 1 ) .  The new degrees of  free- 
dom can be substi tuted into the calculation of  Ps. If the 
unit of  the exper iment  is an individual  rather  than a 
plot then k = 1 and aZw = 0. These new values can be 

used in the calculation of  Ps. These modifications of  the 
calculation of  Ps will change the overall  magni tude  of  
Ps but should not change the comparisons.  

The third method is to use estimators other than 
A N O V A  to est imate the genetic variance components.  
Max imum l ikel ihood est imators (Hayman 1960) are 
often suggested as an alternative. These estimators are 
biased but  the probabi l i ty  of  negative estimates is zero. 
The max imum l ike l ihood est imation method will not 

solve the problem of  negative estimates of  a 6 from the 
nested mating design unless the max imum l ikel ihood 
estimate is derived for 6 .2 . If  the max imum l ikel ihood 

2 estimates (Searle 1971) of a~  and av~M) are s imply 
substituted into (2), the estimate could still be negative. 
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